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PREFACE
r

Mathematics is such a vast and rapidly expanding field of,study that there
)

are inevitably many-important and fascinating aspects of the subject which,

though within the grasp,of secondary school students, do not find avlace in the

curriculum simply becauSe of *lack of time.

1 1.

Many classes and individual stuuents, however,;may find time to pursue

mathematical topics,of sPecial interest to them. This series of pamphlets,

whose production is sp6nsored by the School Mathematics Study Group, is designedd

to.make material for such study readily accessible in cla6groom quantity.

Some of the pamphlets deal wi,1511Pmaterial found in the regular curriculum

but in a more extensive br intensive manner or ftom a novel point of *Lew.
,

Others deal with topics not'usually found at all in -the standard curriculUm%

It is hoped that these pamphlets will find use in classrooms-in at least two

ways. Some of the pamphlets produced could be Used to extend the work done by

a cla'ss with a regular textbook.but'otheri could be used profitaplykwhen teachers

want to experiment withi treatment, of a topicdifferent from the treatment in the

.

regular text gf the class. In sell cages, the pamphlets are designed to prOmote
4

the enjoyment of,,studying mathematics..
,

a

Prepared under the supervision of,the Panel on Supplementary Publications of the

School Mathematics"Study Group:

Professor,R. D. Anderson, DepEfrtment-of Mathematics, Louisiana State
Uhiverdity,'Baton Rouge 3, Louisiana

. Mr. Ronald J.'Clark; Chairman, St.'Paul's School, Concord, New Hampshire 033Q1'

' Dr. W. Eugene Ferguson, 'Newton High School, Newtonville, Massachusetts 0160

4r. Thpmas J. Hill, Montclair State College, Upper Momeclair, New Jersey

{Carl, S. Kalman, Roqm 711D, Office of the Supt. of School, Parkway at
21st; PhiladelPhis.'16, Pennsylvania 19103

Professor Aygusta'Schurrer, Department of Mathematics, State College otIowa;
Cedar Falls, Iowa

1

,.

Dr. -Henry W. Syer, Kent School, Kent, Connecticut

Professor Frank L. Wolf, Carletdn College, Northfield, Minnesota 55057

Professor John E. Yarnelle, Department of Mathematics, Hanover College,
'84nover, Indiana

- «
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FOREWORID*

This booklet will be most useful for enrichment at the

eleventh and twelfth grade levels. It treats algebraic structures

'as abstract mathematical systems and'introdUces such important *

ideas as'group, non-abelian group, field and subfield. Proofs
1

are%figo'rgusbut not tedious. Answers to the Problem's will,be
1

fund in to back of the_booklet:
-1 Aro

-

. 4

,8 As llackground'the reader needs familiarity with the following

sets of numbers: integers, TationAls, reels and complex numbers.

No deep or strange theorems are presupposed, bilt the bc4lgt
o,

... requires mathematical,paturity.

It was originally published,as a chapter in the SMSG course
, . .

called 'Intermediate Mathematics',N

_)

0
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'ALGEBRAIC STRUCTURES \
i 1

-

1. Introduction. ,4 A
-st

During our study of mathimatics, we use several number systbms: the
o'

natural numbers, the integers, the rationatl numbers, the real numbers-and the

complex'numbers. In each of these systems our concern is with the following:

.

(1) Objects on elements: numbers;
.

(2) Two operations: addition and multiplication;
1

'

(3) Laws satisfied .c:i the operati'dhs,
.
duc'h es the commutative and\

IL \
, i associative led.rs

'

of additl, ion and ltiplication and the distributive
., ...

/
.

. t

A law.

If

.

we stop sod.ref
. ,

ilect for a moment, we see)tha
'

many of the algebraic ir ,

/
computations whic h we cairy out are ind encient'of the nature of the numbers

1)

with w,hich we %re operating and depend solely- on the fact that the operations
. . . .

in question are subject to laz,Is 'respected in each system. Thus, for example,
.

we eonZner the identity'

9

le

. .
1 .

,
c. a

2
- b = (a + b)(a

.

and think of, this'assertion, as, applying to a and b taken as
. 7".

c.
-: (.) integers, .', ' T

...) _ ( D
(2) 'rational numbJ rs,

, : '
(3). real numbers,

)(1, ) complex numbers.

!,,We see, that, if we estallioshed the Identity la at the earliest stage for
.b

.

--integers and observed. x '

o' ',:

- b)

`t-

(1) that'the verilfication depended only on the distributive law the

.6.as-cry-Wgii.V--1h1,7sand coraptative laws and properties of the addi-

frive.,114Nand

(2) that.,eaFt". Of the laws arced properties invoked were in force for the
1.N

. complex numb r system,

then it would be unnecessary to r6peat'the verification for the cap where a

and b are complex numbers.

Without such laws algebraic computation as we know it would cease to
.

exist. The whole sourct,Of rules for algecraie computatiori is to be foupd in-7

these laws.

.

7
4
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We can,

common t'

4T we like, seek to.abstract what is algebraically'esafntial and

44-Specific number 'Systemsand. developlgebraic results which

our work-in eachhold for eackO -t4ese systems without having to repeat

special case. *This approach is of great importance kn

mathematics, especially in modern higher algebra which

many parts of modern

is-sometime eallea

40pstractealgebra,

What is the nature of the fundamental algebraic operations that we have

met.?Aet us takv:the addition of real nuM
,

kers: -We are given real aiumber's,
$*.

4., ,

asay a and b , in orier, or, if we like, the ordered pair (a,b) . The.oper-
010.4g

ation of addition assigns tothe+ordered tali (a,b) h unique real nurnber
.

,which we designate a+ b. The-words "assigns" and "unique"rgiVe 'the secret .'
away. The operation ofydition (of real numbers) is a function defined for -'

. _

each ordered%pair of real nunthers which assigns to each such' ordered pair
. .

(a,b) of real.numbers a real nuMber, the sum. a.-
, \,, 4

11. that while most of a f.unetions which. you have me-6 assigned real numbers to

rear numbers, the function concept isan extremely general one and we may
4 , v.

,certainly consider.a 'function f which assigns to each element a of a given
...

. Class A a unique elemenI (labelled f(a)) of a given class B . In the
\_..! ..

t It should be observed

?,4 .

,example of addition of real,numtIrs, the class A. is the set of ordered pairs

of real numbers and the class a is the set of real numbers itself. There is

a point conceviing notation that. should be made. Instead of Writing the real

number associated with the ordered-pair (a,b,) in function-notation, say

S[(a,b)1 , where S (stianding fgr "sum") is the function just described, we
,

use the usual'notatpp and write a + b .

t

-

-2. Internal Operation%
C'e

Let us try to abstract what. Is algebraically essential in the example of

addition df real numbers. ,Suppose that A is an arbitrary non-empty set of

elements, the.natureof whih need not concern.usd, Suppose further that there

is given g fundtion which.is.ideaned,for).the' ordered pairs (a,b) , where

a E A and b E A , which assigns tb each such ondereOpair a member clf A .
--. ,

01 Such afuncti6n is called an internal operation in A. Cit is called 11Inter-
.

nal" becaus;)the components a and b of the input (a,b) are drawn from
4. .

A and the output assigned by-the function iS also a member of Ar Hence,

the operation in, 5Upstion does not involve data taken outside of A. ) I.

411'. see siSs publication entitled, FUNCTIONS. -

2 8
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Mere is also a notion of an external operation and, indeed, an example

,

isto.be found'inthe algebra of vectors when one considers real multiples of.

-,

.

- .

wgiven vector so that input is an ordered pair,;pf'thetiorm (real number,.

vector)and output is a'vector, Here we go outside the domain ofvectorsito

specify the Input --- hence "external."

,-,
'

In this chapterlhowewer, we shall consider Only internal operations and,

'.-for that.reason we
salAenceforth simply say "operation" rathet than "in-. ., ..

-.

.

.., -ternal opexatiOn." As it is customary, we
shall usually denote an operation

-,..',..
., 414N, ,-..'i4k

_...,

'by a..multiplication sign *-., an4,4ile 0.eilient,assigned .c)
the ordered pair.,-

(a,b) by. a-b when we are concerned with-a single operation. We shall alsoA

write "ab" for "a b"' when there is no doubt about the meaning. We shall

have pccasion later to deal with-two operations and then'we shall usually use

+ and to denote the tcto Operations.

If we are concerned Ath a finite set A, ,we may specify with thd aid of

a multiplication table how e given operation acts in the same way that we

listed the sum and product of certain important pairs of natural numbers with

f

then aid ef;pddition and multiplication'tables
in elementary arithmetic. The

proCedure is to use'a square table marking rows by the elements'of the tet A

and colUmni,by the elements of the set A. The row markings are indicated pt

!g°

the 'left of the body of the table and the column markings are indicated above

.th-4body of the table. Given a, b E A, in the Space in.the body -of the

table belonging to the row marked "a" and the column marked "b ", -we record

If

the element associated with (a,b) by the operation .

Here if a .simpl example: Let A = (0,1), and let denote conventional

multiplication in th real number system. Then the operation may be tabu-

r

Ated'as ;allows:
/

.J

Suppose that we consider a s0 A''consistfing of two'distinct elements,

and b and we ask in how many ways can we specify an operation in A. This ,

'amounts to constructing in all possible Mays
two-by-two square tables in each

0 -

space of which is recorded an element,of A. Here are some:

a Et , b a

.a a a a b

b a a", b

b a a

b . a

b,

There are 16 such operations in A

3

a

a

b a b

a a a b

b, b ,a

4
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v. .- EXercises 2 , .

-

\,1 List the remaining 12 operations in A .
. \

,
2. Let ,A = (1, i, -1,:;7.i) and let. .. denote.cOriven)tional multiplieati 'n...

.--for complex numbers. Show that .. is ,an 'operation .in A and construe,
.

the table for .c .
1 , , _ .

It is of interest imp note that,if A is a finite set containing n
2

elements, the there are '
n
n

distinet operationsirr A . tFor n = 2 , we
)4.

have 2 = 16 distinct operations fn, A ; for n = 3we hal.;e 39 F 19,683
distinct operations in A.)

a

!le shall be interested instudying, the composite object consisting of a
'non-empty set A and one or two operations in A.. Precisely, the term
"composite object" is to be taken here to meameitheren ordered pair of the
form (A, ) where is an operation 4n A or an ordered triple of:the

.

form (A, +, ) where + and. are operations ih A . SUch.a oompositer
object is called an algebr4ic structure with or.. operation (oxitwo operations

'respec'tively). An example of a structure with one operatiOnis given by'
'taking A as the set of integers and as the customary e.pdition. An'ex..
amvle

.

of a structure kith
two operations is Liven by taking A as the set of. .1

real numbers and .+ and respectively as the customary, addition andamulti-
Plication, for the reals. 'AnotAerlexample,of

a structure with two operatiols
lf' is given by taking A as the set of real numbers, + as the customary multi -

plication for the real numbers an as the customary addition for the real
numbers,

Now it turnsout that the interesting structures' are those which are sub-
..ject to various ldws. We saw thatthe number systems which we studied earlier

/were structures with two
operations which respected such laws.as the coruta-

tive laws, the-associative lawi, and the distributive law. Tf we wished to
take into account Structures which are, not subject

to any restrictions or }laws,
14would be faced`with many different kinds of structures having very few pro-,

7perties in common. WelLeOuldnot hope td find interesting results 'which wouldI

be Valid for all structure's with,a given set A and with.a given nUmber of
. operations.

0

On occasion, instead, of referring to the structure ,"(A, ')" Or
"(A, +, )" we shall use the less forual "A together with the operation

"..or "A together with the operations + 'and " .respective13,,,,as Well.
C.,

.

'as "A .

and the Operation ",

o



.
Ile shall concentrate on two important etructuresi which permeate elemen-

tary algebra -- the group and the-field. Our interest will center princiillly*

on the notion of a held Which embraces three of the.imPortant'nuhber systems

whichiwe haveet so far -- the systems of the rational numbers, the real num-

bers, and the complex numbers.

`r;--

6 3, Group.
°. .

o

Suppose that we consider a structure with one opeiAtion (A,
e

) . One

.

.
example which we cited abo.vp where A is the set of integers'and is the

..)

customary addition, has the following two properties:

s

. :
.

, ,

, (1)
. , The'associative law, for addition is satisfied. .

4

.

(2) Given integers a and b., there exists a unique integer" x satis-
,

'satisfying
Tying a + x = b and there exists a unique integet y

t.

y + a . b ..
/ .

.

.

,

*(1..e ignore deliberately
the question oi' the equality of' x, and y for a

reason which will become clear presently.) If we ask for structures withdne

- NA
operationieh have these listed properties and

thisveciar structure, we

1 (
r ,

are led to the very important structures with one operation galled groups.

,

.

... / They
appeart4rough.out mathematics in many different guisesrThe study of. -,

groups as such i'tin instance of algebra at it's most abstract.

%.

...

. *

.1
.

' 4ecif ically 440 i is said to be a gr oup provided that the following

'two conditions are'satiefied:

G 1. The operation is associative. That is, given elements a,. b,

c in A, 'we have
+44.1444,,,

ia b ) c = a ( b c ) .

02. Given elements a, b in A, dach of the equations

. oe

and

a b

y =b

has a unique, solution in A

It is to be observed that we have not required that the operation ti4,

. commutative. /n fact, we shall meet examples where does not satisfy the

commutative law which asserts that a -b = b.-a' for all a, b E A . This is

01,17v it yas important-in defining the notion of
operation to_have as our inpu't

'hn ordered pair of elements of A. The order in which the compo ents are.

assigned may very well b6 essential. If the operation satisf the'

5
I 1

4

-

4
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commutative law, the group is called commutative

or, as is more ustiall,
abelian,,'in honor of the great Norwegian

mathematician N. H. Abel (1802-1829) who dig.pioneer work in the theory of groups.

; 'Let us consider
some examples of groups drawn from our earlier experienc

.In these examples the opera'ions are the standard onestf the number systemsso that the gydups in question are necessarily'abelian.
We shall consider an41example of a non-abelian group later (Section 5).

/

Example 1. A = set of integers; the operation is.the conventional
adaitioh + . The second

postulate states that the equation
a + x = b , where, a and t aresintegers,' has a unique in-
tegral solution.

Example 2. A = set of real
numbers different from zero; is the con-

ventional

EXamle 3. A = set of vectors in 3-space; is the usual addition of.
vectors.-

44a

1. Verify that each of tale cited examples satisfies the group postulates
G 1. and t G 2

. Show that-the following are also examples of groups:
Example 4. A is the set of n

th
roots of 1 , where n is a positive

),.
4r-

Exercises 3

integer, and cris the
conventional multiplication for com-

plex riumbers.:Here It is to be observed that A has just
n elements.

EXample'5. 'A is the set of positive rational numbers; is the con-.
ventional multiplicationt

2. In,wliat way does the following fail.to yield an example of a group:
A = set of all

complex numbers and. is the conventional
multiplication?

. N
.

3. Let A denote the set of real
numbers'of'the form a <+- b1-2- where a i.

.'and b 'are, integers and let be the conventional
addition. tVerify

.

that 4ES an operatidn in
\

A and that the
group postulates are satisL

fled.

4 Let A denote the set of ital numbers
different from-zero of 41e.form

a + 1)12 .where a'and b are rational add let .e,the conventional
'multiplication.,V4ify that is an operation in A. and,i'lhat the
group postulates are.satished."

A

9
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Some General Properties of Groups.

Earlier work with number systems may have convidced you that an importsiht

role was played kly the notions of additive identity, additive inverse, multi-
.

plicative identity, multiplicative inverse. The counterparts of these notions

appear in general group the6 y as we shall now see. Bear in mindthat the

commutative law need not be i effect for anarbitrarY'group!.
. I

Identity element. Here 4 ask whetheethere is an element e in A .

- \I
....*.

' .. which has the'Pi.operty that e = e .e. = a for all elements a E A .. In

-eaehJof the cited examples o
\

Section 3 there re is precisely one element with

.

. ,

this property. Thus in Ex pl.e 1, the i Leger 0 is the unique element

.

having the stted'propIty;, in Example g, i 1,; ill' Example 3, it is the

4,. zero vector (0,060); 'In'nEx pie 4, it is 1'; in Example ', it'it 1. 'We

.:,
now turn to the situation for an arbitrary group and a proof of the following

', theorem:

...

, .
L

Theorem 4a. Given the ou consisting of the set A and operation ,

there is a ue element t of A which satishes the
.

. .

following nditfon:

for all/e. E A

.1be el:',ement e 'is-called the identity element o ille*groap.

,',ae=ea=a

.

. . ,

Proof of Theorem 4a: We fix an element- b E A . That there is at most

_
. ;.t. one element e having the stated

property.follows from the fact that e is

,.t-, solutiot-of the equation' b .x = b which has precisely one solution. .,

''''f--'"-'-'------4ZNow,4 ,e denott the solution of .b. x'= b and let us verify that

r ' 4141/.- A',a. e = a *Ota in A. Gwen\ a "E A , let c saisfy e..).V. a.

,4-'
z .,r

c.

:,'That ie, "e 'is the 4 e solutiOn7of+y,11 =e. . Our reason for introduc-

ing

.

c it :that, if we write a. as c .1) , we are in a position to relate the

product, ae (which we should like to show is equal to a).to the product

.1i.e about Which we have -Specifibally, ire/-\ .
- ..

(.! ,

a e = (c b) e

=- c (b .,e)

c b.

. .

, . I, .

.
The roof..of the theorem will be complete when we show that we also have

...

e a. = a for all a in A .-.1- Given a ESA ,A let d denote the unique eolu-

,/

tion of*the
equation ya -4 a ., In order to' relate d and e",weintroduce

.
.

r

1 (I



I
,3f the unique solution,of tie equation a x = e.. (thereby linkin.g the

['e

a and e). ',From d a = a and a f = e , we have .

,,,,r,

.. (d C.)a fo= a f t
= e .

From the associative law and a f = e ., we have.

low

.(d a) f = d (a

A = d :e

Taken -together Atte'se' eqUalities

s
, d e = e .-

Ndw e satisfies the equation y e = e (Recall that a _44= a fortr in- A in particular for a = e This yields e e = e) Since. e
and d both satisfy the equation y e = e- and since this equatidn has a
unique solution, e = d . Hence on taking account of the relation d a = a,
tie have "e a = a . The proof of 'the theorem is now cOmplete.

A

The notation "e" will be reserved for the identity elpment.r
Enverse element. Given a E A let us consfder the two equations

a `.x =te and y a = e .

Since we do not t;aVe the coMMutative. 'law at our disposal, it is not ob-
vious-that-that the solutions x and y or these resp cti.ve equations are 'equal.
Let us see whether it is true, , in.spite of the no / availability of the commu-
tative law, that x = y . Let us multiply each side of alx = e on the left

y . We obtain

Wi-,

,

/
y (a ix)

Using the associative lawakid th pasic property of the identity, we cibtain

Hence

(y a) x = y .

e x ,= x

. ,. ,
conclude that x = y . The common solution of a x = 'e and y a ='e is

lp

balled simply the inverse of a . ie'denoted a
-1

.

1 r ,

8 , 14



Exercises 4 $.

1. Determirie the inverse element of an arbitrary element fc2r each of the

groups'examined in Section 3. The'answer is to be stated in terms of the

special irAerpretation.of a group given by the example. Thus in Example
07

1, the answer is "the inverse of a is -a." ;

2. Show that a
-1

. b is the solution of a x = b, and that be a

solution of S, = b .

3. Which of the multiplication tables considered in Section 2 satifty the

group requirements? In case of failtre,-state the reason. In e case(s) -

where a group is specified, exhibit the'identity element and e inhe

of each element. '

4.' Let A denote a non-empty set, and an operation in A

there is at most one element e E A' such that a e =

a E A .

5. Let A denote a non - empty, set, and an operation
9

that 4 satisfies the aSsoeiafivAaw. Suppose tha

. Show that

=a for all

''SUippose'

there.exists an

element ,e E A such that a .e = e a = a" for all a E A . (The .ele-

ment e is unique by Exercise 4.) Suppose that for each a E A-,,there
. . ,1 f .

exists x E A such that a .x = e and that ,there exists A E fp such

that y st = e: Shaw that A together with is agrotip. ...41int:

With x .satisfying ,a x = ,E! and ,Y satisfying 'y a .=:..e ), show that 'p

a .z = b is satisfied by 7(.1) , an4, bNultplying each W /y ;
. . .

that the'only possible soldtion is y b . Hence conclude that iherd'is

.

precisely one solution. Treat the remainfnkcase similprly.
- ..

6.0ConscAlet multiplication tablesoperatioain a set A of hree ele-

ments go that the group postulates G 1 and" G 2 are satisfie Hint:

v
We may assume that one o1 the elements is e , the Ventity, arjd we may

e

callsoneof the r'emaining!.element9 a

tipn otp. Aultiplicationitable can be

EiccoUht is taken of the nature of the

. postulates.
.

and the other, b . The construe-
.

carried out in only onell,my when t

iderftily element and the group

5.' An Example of a Non41pelian Group.
.

'..;-
-

1.

- .

4 , I

It is not hard to.give an example of a group which is, not abelian by

means of a specifically, constructed multiplication table. iiroweer, the2e is
..-

,

greeter interest in constructing an example which is meaningful in
.

terms of

our,earlier experience aid which at the same time is imOr:tant'ili terms of our
. .

'future study of mathematics. The elements which we consider arerthe non -

9

1, I ;)
.,e

s'



constant linear.fUnctions; that is, the functions i defined for aff real

numbers by the formulas of the form

5a , i(x) = ax )

there \a and are real numbers and a / 0 . Our set A is taken to be
p

the set whose elements are the JUnctions 2 .

It should be observed that.a given linear function is defined by pre-

* cisely one formula of the form 5a . That is, if

A

.4 ax + 6 = yx + 6
,

a / 0 and' X / 0

for all r.pal x , then a = y rand = 5 . This is seen by first setting
)

"50.,=,0 alikrifirerring_that, 8 = 5 and then that a = y

Composition. Suppose that we are given non-constant linear functions 2

and M where i(x) = ax + B and m(x) = yx + 5 . It is often of inte.x<st to

construct a function from'the given functions i and m in the following -

manner. Startihg with input x our first function 2 yields output i(x)0_,!?

Suppose that we now use i(x) as input with the function m . The output is,

m(i(x)) We see that for each real x the quantity m(2( -m)) is unambi-

'guously gpecified. Thus we have a function determined by the requirement that

to each real x there is assigned M(2(x)) . This functipn is called the

, ,composition,of,:ra And 2 . It "is denoted4by i4., Let us determine

4 M(i('k)) explicitly. We have -

5b ,m(:i(x)) = 'y(2(x)) + 5

= `Y(ax + + 5,

a'Yx + .5)

w.
This computation shows that the function m 2 is a non-constant linearc,

function, for the coefficient of x in the 16st line of Formula 5b is not

zero. The rule which(assi,gnv to the ordered pair (m,i) of non-constant

linear functions the composition function m 2 is an operation in A . By

analogy with what we did with. sum and product, we denote the operation Of

composition_bY' 'Let us pause to consider a numerAtal exscmple before Ve

continue our study of the structure w Oaave just introduced.

Thus, suppose
4

,

/(x)- = 2x + I and m(x) = -2x +

We have for im

.8(m(x)) =2n(x) + = 2(-2x + 3) =

s .

16
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We haire for m :

i

m0(x)) = -2/(x). + 3 = -2(2x + =-9?11.5.5,+,1

0

This example shows that with the Specific choices 'made for i and m ,

we have

I m i m 4
-.,

,

We recaill tliat two functions whicirshave the same input sets (i.e., domain) are
. .

different if they assign diffetrent outputs for some member of their Common in-

put
1 . ., ,

set. In our example i m and z17:77731EFghdi ferent ou5rIts for each
..,, i i..

real x . Hence they are distinct functions. ,
Q. ,

., -This example shows us that the commutative law does not 'hold ror the, op-

....Aesrationof -,cOmposition of (non-conSeant...)t,.lirleaz functions.
.-

How do Ile show that the structure Consisting of the non-constant linear

functions( together with the Operation Of composition is a group? 'We simply

verify that G 1 and G 2 are fulfilled with the operation of cOmpoOitio n.

G 1 . Suppose that B , m and n are three given ("non-constant)

linear functions. Given Sc sa-s input, is (m- n) assigns as.output the i

,
output for input n( x) , 1, e ,

t
the output for input m( n(x) ) . Given

as input. (i-lm) n assigns as output the i m output for input n(x)

'that i,
/

O 4 /.
;v41.

:11F%

t`, ^

p m( n( x) ) ;4/

But B m(ii(.x)) the

x as input,' i .."(111n):

'functions B e (m n) and

verified for ,cchposition.

output for input m(h(x)) lieripe/fol each real/

and (t m) n assign the dune OtiOut. Hence the

(.1 n are equal. The associative lair` El 1. is'

';

and m , s14: Is there a memberG 2 Given two members of A

n satisfying

5c

is there 3tis't' one

ploratory way. Let ,

k

e.

n, = m ;

such member? Let us try to' approtich

-`

i( x) = ax + 6 ,,6m(x) =:yx + .

Suppose.that
,

rf,43t /

datis;ies. -`c, . From 5b

n(x) =-, +

we have

n(x) = C4)0( +

) 11

1 7

the
/

question in an

z
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--
iHence if i .11 = m , we have, using the Xact that a line r function may be

represented by only one formula of the form 5a ,

Hence

5d

a1\ =-T , E3 + alp = 5 .

.We conclude that, there is at most one such member n . Qn the other

hand, if we take ? and

.

4w as given by 5d the function n defined by

n(x) =NX+ 4.

does satisfy. 5c. Hence; 5c has a unique solution.

\I The treatment'6ftb:e other equation, n.2 = m where i and m are

.given members of A , is similar. 111Us we gee that the set of,non-constant

linear functions together with -lie operation of composition is a non-abelian

group.

Exercises 5-

- I

1. Furnish the details concerning the equation n 2 = m ,where i and m

are 'given members of A .

2. Detrmine theidentity elemerit of the group which, we have studied in this

section.

3. Determine the inverse of i if 2(x) = ax +

4. Show by,directicomputation that 'n, = 2-1 m

-1
that, n = m i satisfies n = m where i(x) = aX"4 p and

p', a / 0 .

satisfies 2. n = m ancl

m(x) =:yx + 5 ,a/0, /O.
5. Show that 2.14= m for the functions of Exercise 4 if and only if

(a - 1)5, = (1/,- 1)6
Let A-, denote the set of ordered pairs of real numbers with non-zero

c

firs components. ,Given (a?b) , (c,d) in A , let (a,b) (c,d) be \
IN

1_p

d fined as (ac, ad + b) . Show that (A, ) is a group What is the .

identity element? What is,the inverse of the element (a,b) of A ? Is

there any relation between.this group and t e group of non-constant

linear functions treated in this section? Hint: Use No. 5 of Exercises

.....--.

A
..,...e

,

12'



7. Suppose that A is tlie set of ordered pairs of rational numbers with
. .

non-zero,ffr'st components and that is defined as in Exercise 6 .

'Show that (A, .) Is a group. Show that a correspohding result holds.,..;

Chen QA is the set of ordered pairs of complex numbers with non-zero
. Z

.

first components and again is defined as in Exercise 6.

6. Field.

We now turn to the consideratioA of an algebraic st 4ure wh'ch.is pre-

.- sent in very many areas of mathematibal.study. We re r to thenation of a

field.. Once the definition of a fi4ld is stated, 'it will be clear that each

of the following numbert,systems is p field:

(a) The rational numbers witifthe usualaddition and multiplication.

(b) The real numbers with the, usual addition and multiplication.

(c) The complex-numb&rs with the usual addition and multiplication.

- Let A denote a set containingmore than one member: Let + and de-

note two operations in A . Then (A, t., ) is called a field provided that
1

the following postulates are satisfied:
1

F 1. The structure (A, +) is an abelian group. (The identity element

of this group is oalled.Pgero", and is denoted by '0" in SeeCT-

dance with the usage employed for the number systems which we have

studied earlier; the inverse of the elteMent .a is denoted by -a ,z
and the solution of a + X = b by' b - a).-

F 2. Let B denote the set obtained from A by'the removal of the

element 0 . It is required
4.

, ,)

(1) that '. be an operation in B -- i.e,,, if bl ,., b2 E B ,

then b
1

b
2

; and A. '

,d,-, e .

(2) that
_
tha-structure (B, !) be an abelian group. (The

identity element ofthipgralp is called "one"-Ilnd is denoted

by "I". When we spellk.of asT4n oppration in B , we'

...F .

' --'7. Pctually refer, not to the full operation in A , but
---..., , - - .- ,1

rather.....to:W function obtainedfrOm by restricting atten-

tion to 14ats.of the form (hi,b2) where bl and 152 are'

,1' -
;_..

members-pf.: B .-) ,,,...........1r ...1 '.... .., s

. ,0 - -- '-

F 3. The two distributfve-Saws
T-----....1.4:;.1.-....

-----I-,;,,, ' ,
..,

-"-i,-.."i'a (1:1;:i- c''').= a. b + a c .
..._.

( b + V a = ;1) f, a + c a , . .,-

I_ holalt". a , b , and c beingarbiitrary.-elernent's of A :- '',.

13
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Some remarks art- in order:

iVen et field (A, +, it is

unnecessarily clumsy modes of exprehion to use

.

A

sometimes, donvenient in order to.avoid

theP( hisse "the.field :A" and

to mean either

(1)-' the set A or
:

(2) the field' in the strict sense: (A, +,
).

Which meaning is intended will be clear.from context. When we speak of the

elements of the field, we mean. cf. course the .elements af A .

age write,,,,as_is.usual, "al" :for, .

Of course, it-is possible to state the required postulates

form and in detail.
.
°The group concept, hotever, permits us to

individual compartments a description of the,actioh

tions + and . It is now,clear.fhat if the two

of eaci of

operations"

terrelated in a serious sort of way, some gOndition pertainite
*

must be in efliect. In the postulates.which we have listed,

which links + and . In particular,.it is natural to turh
.

how 0 acts in multiplication.

We have

and hence if

A

and

0 = 0

a is an arbitrary elemeht pf

a(0 + 0) = a0

(0 + 0)a =

Applying the distributive laws, We obtain

a(5 + a0 = a0

aft

in alternative

separate off in

the given opera-

are 'to be in- .

to both + and

it .is F 3

to °F 3 -.04see

Oa + Oa = Oa 3

relations which state that '110 and Oa are each he zero of A ;- i.e.,

a0 =0a.= 0*, aEAe
.

POstulate F 2 pertains only to B . Are the commutative and alsocia-.

tive laWS fl effect for, in A ? The only case that need concern us is

when on of the given elements is zero, but then we see that, the two laws are

...41,gge,ot,,for each side is zero if one of the given elemats is.
,.

14
20



Since 1 0 = 0 and 1. a = a , a # g, we see that 1 is an.identity
/

element for '., in A . The eleMent 1 is the only element in A with this.'

i property. If e E A satisfies a e = a for all a E A , we have :

ti

and

Hence*

Et.

ci

1

1 e = e..

1 = e

CorTSider,s equation a, x = b . If a = 0 and b # 0 ,

:solution.. If a = 0 and b =, 0 , then revery" elernent of A

Suppose that a / 0 .
Here:we sqe, using the same argument

the study of a group, the-Cif .a / 0 , the equation has the

-1
a b . Again, following our earlierpractice for number

denote the solution of a '.)c = b , a' / 0 , by .

b

a

We now, see thatzthe identities and theorems which were obtained DO the

rational number system' the real number syStem, or/the complex number system;

amd whose proofs depended only on the structural laws whichhold for an ar4i-

treery field, continue to hind ",for an arbitrary fled.- ,Thus, if 'a, b ,

are members of an arbitrai'y field and b / 0 ,and d / 0 , then

44?

thenAere fs no

sol,ut4.on.;,

that we used in

Unique solution

sistems, we shall

7'6a
a c ad -F.% bc

e.b d bd

Exercises 6

.
Verify thatEquation 6a holds 'For an arbdrary field.'

Given that a, b, c , d are elements of a field and that b / 0 , c / 0 ,

t

. e # b . Show that
b
c be

and that
ad

(s) bc

6

,

1

1

f

J 3. kow that if a, b , c 5 d , e , f are arbitrary elethents of a field and

- [ . , . r

aei, - bd / 0 , then 'the system' of equations ' .

,

axyf- by = c

. dx + ey F f

, has unque solution (x,yj whose Components are elements of the field.'

Give explicit formulas *for the solution.

;
e



4. 'Let A consist of the,numbers .0, 1', 2 . Let,an operation +- be

defined in A by the requirement that if a, b E A ,. then a + b`.4.s to

be the remainder1atained when the number a + .(+ being 'the conven-

tionaladdition) is divided by 3 . Thus if a 2 and b = 2 , then ,

a + b is the remainder obtained when 4 = 2,4. 2 is divided by a ; " "

. SinilarlY }let an operation be defined in Atby the re-'

quirement that, if, a ,b E A ,, then a. b is to be the remainder when

the number ab (refereribe being made td conventional multiplication) is

divided by 3 . Display the tables for + ,and. . Verify that the

structure' (A, +; .) is a field. This eXemiSe.Yields an elample of a
' j ' '

. field which has precisely 3 .elements.

5.. Let A consist of two distinct elements a, b . Let + and be the

Operations in A given by the following tables.

a b

a

b

a b

b a

a b,

a a a

b a b

-. Show that,th4 structure. (A., +f .) is a field. Specify the additive
.

',identity and the multiplicative identity of this field.

7. Subfield. .

, . - ,; . . . -.

Given a field whbse elements constitute a set A. It is natural to
.., /

consider subsets 'B of A which taken together with + and make up a

field; that is, subsets" B which have:the following two properties:

.

. (1) When + and are restricted to cdered pairs (bi,b) , whose

cpmponents are in B they define operations in B.

. '(2) D together wit.: + and so restricted is .a field.
A

Such a subset B of A is called a subfield of A . Of course, one can also

call such a B taken'together with its two operations a subfield of given
field. The meaning which is intended will be clear from context.

With this notion we can proceed-to find out something about the architec-,

tune of the complex number system.- Let Q denote the set of ration al num-
.

e. bels;- 10 R denote the set of real numbers, and let C denote the set of

complex numbers. We know, that Q is a subset of R, and that R a 'subset

a.

of ; in the notation. Of the theory of sets,

.

Q(R CC .

16
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We may ask/whether there are any intermediate subfiglds betwben R and -"C or

between Q and fl , and whether there is any subfield of the complex number

system which is a.proper part of Q..

Suppose that A is a subfield of the complex number system.)hich con-

tains Suppose that A contains an element not already inV R . Then
. V

s an el ment must be of the form a + bi where _a and b. are real and

L0 . Since aEA, (a + bi)-a= SincebEA, ielk. Hence

given arbitrary real nuMbel-s c and d ,'we have die A and therefore

19 Ago + di E A That is, C C A We need to recall that if fA C C and CC A,
1

then A = C. -Hence A =_C . We are led to the following concluion:

Theorem Ta. If A is a subfield of the complex number systel contain-

R , then either A = R or A = C

This theorem states that there is no subfi ,eld of the complex'nuMber sys-
4

tem which contains R as a proper subset and at the same time is a roper

subset of C .

4A'second result that is easy to obtairt is the following:

.

Theorem M.', Every subfield Of the complex number system contains" go.

e

Proof Let An' denote a subfield of the complex number system. We note

that if a and ii4tbelong to A and h / .0 , then li, E A . -Now 1.E k: It

) .
, .-"'-., -

is a conseouence df the additive Closure of and the well-ordering property
. - s

of the natural number system that every natural number is a'member of A ..'

Suvose that there are One.or more natural numbers not` in A and let. m be

the minimal member of the set of natural numbers not in A (the well- ordering

V.V

property assures u.s.thereis such
-%
a minimal member). Then m - 1 is a mem-

ber of A , but our hypothesis tells us m. is not. Since m = (m 7--1'.)-.+'1
. ,,,,

and m - 1 and 1 are in A , it from the additive closure of A
,.

that m itself ig in A ..% This contradiction proves that the set of naturalt..
numPers not_ in A is empty. \,.rt now follov)s that every integer is a member

p

of A ", since for each natural number n , -n is a member of A . Since A

contains the quotients of its members, it follows 'that A. contains every quo-1.
. .

1 ."..

tient of the forM
a

where p and A are integers and q / 0 . This says

,- ....: . .."]!..

that every rational-number is. aliteMberof A In other words, Ql: A . The

theorem i' establi led-. ..

4E! See G. Birkhoff'and 1S. MacLane, A Survey of Modern Algebra; N.Y..,

MacMillan, :946; p.

,n
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Subfields intermediate to Q and .13 . There is a vast hlerarchy of sub-

fields between Q and R . Their study is a large undertaking We shall

content ourselves to see that certain intermediate fields can .be exhibited 11

-a simple way.

Let A denote the set of real numbers of the form'

a + b1/7 ! \
, ,. .

\where a and b are both rational numbers. What can be Said about .the sum
.

and product of elements of A ? Given that a , b , c , d are rational numbers;

we see that
,.., .

d_

(a + b177) + (c + 6/7) = (a + c) + (b + d)I7 ,

and since a + c and b + d are rational numbers, we have

(a +b1/7) + (c + 6/7) e A7 .

.similarly,

0

+ bi7) ( c + 6/7) = '(ac. + 2bd) + (ad + bc)i-§ ,

\

and since ac + 2bd and ad + be are rational numbers, we have

(a + bi7)(c + 6/7),E A .

Suppose that .a + bI7= 0 where, a and b are rational numbers. Then
b = 0 other;r40 1/§ would be a rational number. It follows that also

0 Therefore, a member a + bi-§ of. A (a aEl' b rational numbers) is

equal to zero it and only if a = 0 and b = 0 . This impliei that if
77

a + bi7 / 0 ih en ' a2 2b2 / 0 . Otherwise *e shduld have

0 = a2 - 2b2 = (a + bI)(a t (-b)17) ,

4

so that either a +,b1§ = a + = 0 . from

'have. a= 0 and -b = 0 and consequently a + bi-§ = 0 . That is; if

a + (-b)1/7 = 0 ,7we

.E 44.
- 0, 'a + Y117§' = 0

- We nowlhave by. a familiar Jrationalizatin-metri4p.,

J
a + b12-. ( '4. bif)( c ea,rf).

c + 6/7 (c_ +.6/7)(c -61§)

(ac - 2bd) ($c ad)il
2

c - 2d - 2d
2

us that- the quotient of two memberskf A is also a member of
= IP

4

6
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It is now easy to verify.that A is a subfield of the real number sys.-.
. ,

tem.' We leave the details as an exercise.
,

. %.

Exereises 7

1. ShOW that A is a subfield of the real number system.

? Let B denote the set of real numbers of the form a + b15 where a

and b are rational numbers. Show that B is a' subfield of the real

k ,oumber4yStem% .fr
,

* 3. Show that the only-real =hers beldtging to bbth A and B are rational

numberS. In partieUlar, /5 does not belong.to A . , Hence, A is .inter-

mediate in the strict sense to Q and R That is, Q is a proper

part of A, and A is a proper part of R.

References:

1. Birkhoff, Garrett and SaundersMacLane, E Survey of Modern Algebra
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Exercise 2:

1.

A

b

a'

, A

,a

a
`t.

a

a

a

. a a

.., b b
,

.

. .

ANSWERS TO PROBLEMS
7_------

b

'

.

b

a,,.

b

a

b

a

b

A

a

a ,

5

b

b

Ye,.

'b
.,

a b

'a

a

'a ,

b

b

b,

a

b

b

b

a

b.a

I a b

b a

' a

a b

.b

a

a b

b, i

a f)

a

a ,

a,

, b

a

b

a

a

b ,

,,, b

a

a ,.

b

a

a

a°

, b`,
,

-

b a b b '-

b -, b' b .

/2. That is an operation in 'A f011ows from the /fact that

in the conventional sense of members a and b of A
me mber of A.. The* multiplication table is:

A .tf

E3cercfses 3..

-1.

-i

i -1 -1:
i -1 -i 1

11 -i 1 T
1 i -1

the product

itself a

1 Here only Example 4 call* fOr content. Suppose that a and a. are nth-
a A

. roots of ,1 . From gq = 1 aryi f_in = 1 , we have (a )n = 1 and
1 -,(g)n = 1 . That is, ,xf3 and a each nth roots 9f 1 . From ther ff

-,_ i._
. .

,

faet thiit' ae*.ts -art- nth root_ 1 , we "see that is an operation in54-7' 1

- . a -
A A. Fr.:_m Trcthe fact is an nth ra6t. of 1 ., we see 'that Postulate G4.2

is fulfilled, the uniqueness of. solutiQn,of the equation Oz = a in A
-?,

being guaranteed by the uniquene ss of the solutIon of 132 = a in C .
-..!,,,,,,,m

The associative law follows 'automatically from thIlle-aot, --thA,tmulti.plica-
/ --.1,-..-.

tion in" Ille complex number system is associative. Note .that- -R - I-% -r;o4turst.,. .

tati,vq. Consequently, the equation z8 = a has exactly the same sollition 6

seen A, aa?,apes .i_do
'

= a . - . _

i- . -
l.,

. 20
AI*

.4*
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, 0(

2. Not every equation of the\* orm = where a and p are giVen cot-

plex numbers haS a stlutia ; e.g., take .ot = 0 ; = 1 .

Given a ,b, c, d intege , we have
. .

V.4 . '(a + 131) + (c 4 ElA) = (a + O.+ (b + d),/ e A;v
, ,

1.nc94a + c ant,b +'.41#are integers. Also the equatiOn
, .

+%1W) =Jc c1.42

s the'unielLe solution

(c - a) .+4,(d - b).12-
,,,z

in 5., and moreover thissolutton is a member 641'7A since c - a and
s.

d b are b2th integers. The remaining details;ai,e readily furnished.

pee Section 7 of this booklet, "Subfields intermediate to 9, and RI'

Exercises 4.

,

1. Example 2:, the inverse of a
1

.

Example 3: the inverseiof (a)/13; e) is (-a, -b, .

, 21(kN
Exaniple 4; the inverse, of = cos( ; +'i sin( k) , k =

1 2n
, n - , is =" cos(

k
lc) - i

sin(2k)

0

Example 5: tim inverse of a .

a

Exercise 3: the inverse
,

of a +/bi-§ is (-a) + (-b)lrf .

Exercise 4: "'the inverse 'of a -. ) ) . . .-r'-' is ,/
--.....

a
2

-

2. a (a b.) = (Et. a1) .1)

=`e. b

z

.

(b a- a, = b (a- 1".

- a "-
a

.... 5 'F. b e.

4

r b.,
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I

. The table for (Q,1) does not satisfy theigroup requirements- 'Die tqua- "

tion ,0- x =,1 does not have a solution in (0,1) .. The first three
-,-

tables given for (a,b) ,do not satisfy tht, roup requirements, for in,

114

.,._ .. "

the cases of the first and third tables the uation a _x = b has no
__-..

solution in A and in the case of the second table the equation
.

b x = a, has no solution in As'. ..

The fourth table for (a,b) does satisfy the group requirements. That

G 2 18 satisfied may be seen by noting that each new-row,and eac _p

coIliMn of the body of the table contain each o the elements ,a and 'lb

(without repetition)

-Notice that we cannot be cavalier about the associative law! We must

examine the 8 cases afforded by the distinct; ordered triple's with com-

ponents in A . The confirmation of the associative law-is giveri by -the'

following table.

c
2

ci (c
2
c
3

)
-

)

a_

a

a a (aa) =aa= a

a b . a (ab)

a b a a(ba) = ab = b

a b b a(bb) = aa = a

b a a b(a) = ba = b

b a b b(ab) = bb = a

b a b(ba) = bb = a.

b b b b(bb) = ba = b

'(aa) a = a ,a = a ,

(aa) b =la b = b

(ab)a = ba= b

(ab)b = blo= a

(ba)a = ba = b

(ba)b = bb = b:

(bb)a = aa = a,

(bb)b = ab = b

,El.ch of the indicated reductions in the second andlthird columns of the

body orthe.table is°carried out by use of the multiplication table with

which we are

Atiowor"

e = = b- = b. ,

The table

a b

a

a a

yields example of a non - associative operation: In fact,

-(eul)b = bb and a(ab) = ab = b so, That (aa)b a(ab), a being-

- ,
distinct froM,\

22
28
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1.

4;! Suppose -that

4 /

e and f are elements Of A satisfying for each a CA.'
4

ae = ea = a ,

of = fa = a .

Than setting a = f in the first lin6, we obta#

fe = f ,

and setting a = e in the second line, we obtain-

'Hence

fe = e .

f.

. -
== ..1.13'

It follows that there.is at most one element e E A satisfying for all

aEA ae ea = a .

5. We have

a(xb) = (ax)b = eb = b ,

so that xb is` a, solution of, az = b . Thus az = b has at least one

solution. If z is am solution of az =,b , we have

yb = Y(al) = (ya)z = ez = z,

so the only poSsibility for z is the element -yb Thus az = b has

at most one solution in A,. Hence the equation az = b has a unique

solUtion in A ,

The equation' wa = b is similarly treated.

Corollary. x = y .

We found. (i) xb satisfies az = b , (ii) nO member of A besides

yb satisfies az = b . It follows that xb= yb. But b is arbitrary.

Taking b = e , we obtain x = y . (Thus a "right" inverse is also

"left" inverse -- even if our operation is non-commutative, prov.ided

each of-them exists. neither knew nor needed this fact in zolving

Exercise 4, No. 4, however.)

6:' Since iS the identity element, the followingLpartof the table is

evident:

e Aa !" b

e

a

b

e a b

b , .

23
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- consider theeproduc't aa . It is not possible that, as = a , for .

.. ae = a and the equation ax =21:.....!ms a unique solution'. ,

N

d

It is not possible that aa = e , for if aa,= e , then

ab = b

since the equation ax = b has a solution in A and this solution would

have to be distinct from e and a . Since

eb =b ,

and the equation yb = b .has a unique, solution, we should be forced"td

conclude that a = e . This is impossible. We must reject. aa ='e .

Hence necessarily aa = b .

At this stage we are assured that our table contains the following

(entries:

e a b

e

a

b

e _a b

a b

b
CI

Since'the element a has an inv erse of a
-1

and neither e nor a is

the inverse of a (as we see from the sreiond line of.the table as far

as it has been constructe0, a
-1

. Hence ab =,ba = e . We have at

this stage

e a b

e a b

-440 a a b e

b b e
,4

Wenow see, since the equation bx = a has a solution in A and this

solution is different from e and a;,, that''bb.= a . Cdficlusion: If

we have A group containing precisely three'elements: e ,a, b, and e

is_the identity plementb the multiplication table ie

e - a.. b

e

a

-b.

24

a b

a b e

b e a
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,

. 1.11p..6.1.st note that we have merely shown that, if (A,. ) ism a group, then
4

the multiplication table is giyen by (X) . There remains to be shown

',that. (*) does respect the group axioms. .......--.....
$

-

G2, Since each row and column of the body of (*) contains each of

,.(A.,the eleients of A precisely once, G 2 is satisfiedi

1' -
;---

G 1.- Wermay break down,the c1ecking of the associative law into two

cases. °
1.,

Case I. At least one of the factors is e . This case is disposed of
...

__ .

: by noting .

(ec
2
)c
3

= c2c3 = g(c2c3),, c2, c3 c A ;

(c3:e)c3 =.cic3 = c11ec3) , ci , c3 c A ;

(c1c2)e= cic2 = c1(c2v) , ci ,,c2 e A .

- , .

. Case 2.

.

No factor is e Welist all the possibilities andcompute the
,,

desired prodUcts employing 'Or)

I,
e1c2 )

c
1

(c2c3)

a a a (aa)a L ba = -e a(aa) = ab = e

a a b (aa)b = bb = a a(ab) = ae' --= a

a b a (ab)a,= ea =,a. a(ba).= ae = a

a b b (ab)b = eb = b a(bb) = as = b

b a a (ba)a = ea = a b(aa) = bb = a

b ._ a
r1,1

(ba )b = eb = b t(ab) = be = b

b

b

b

b

a ( bb )a aa. = b

(bb)b = ab e

bCba) = be = b

b(bb) ba = e

4 .
Exercises 5.

I. Here n, i(r) = Max + ,f3Y4- µ From n 2 = m , we conclude that

7\ct = 'y and. 743 +vp. = 5 Hence a = a , = 5 (01.) With 7\ and
a

, .
p so taken,, 11 ; , a. 1

2. The Identity element isthe linear function e given by

e(x) = 1 x + 01= x

, 1
3. From n = e , we have ? = . , p . = -

F

25
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4. .e(x) = cot* p m(x) =Tx + 5 2-1(x) = (*;g.-)a a

5.

-r
m(?t) = ct(,yx + 5) ,+

m

0(11 -m)(x) = tal(1)x+ J + p = + 5

*)ri(x) = 141x + (4) 4kV1 lx -'07a a, a a

(m 2-1) i(x) = (i(ax + 13 +a5 13Y - +.6

We have 2. m(x) = ct'Yx + (13 + ab) and in 2(x) = 'Yax + (s +
Hence m = m , 2 if #nd only if 1 3 4 x5 = 5 + 113 . This latter

equality holds, if and o /y if at) - 'yI3 - 13 . The assertion follows.

6. Note that) if ( ( ,d) E A , then (a,b) (c,d)'= (ac , ad + b) EA

since ac # 0 . Given elements b1) (a2, b2) (a3,b3) E A , we
have

-

((a1, b1) (a.2, b2)) (a3, ba) (ais.2,axlio2 + b1) (a3, b3)

= (a1a2a3 ,aia2b3 +-(aib2,+ b1)>

and

(al bl) ((a2' 1D2) (EL' b3)) '1)1) :(a2a3'' a2b3 b2)

= (a
1
a
2
a

3
a (a

2
b

3.
+ b2) b

1.
)

6

The associative law'now follows. ,

Note that for every (a,b) E A , we have

(a,b) (L,0) (11.;0)(a,b) = (a,b)

L

Hence A has an identity eftment, namely (1,0) Firther, (1`"
a'

satisfies both

(a,b) (X,y) = (1,0),

114"

(x,Y) (a,b) ='(1,0)

and Ka

The cprlditioni.of Exercise 11-, No. 5 are fulfille

inverse of (a,b)
to, t4

.
-
b
-) is thea,

A (1,1) correspondence between A and the set of non-constant linear

functidns is defined by the rufe_which assigns to s(a,b);EA the linear.

function.given by
4*

ax +,:b

26
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1

, This correspondence has the property that if m corresponds to

(e,d) A , then m corresponds to (c,d) (a,b) . That is, "product

,-;; 'corresponds to product." this is an instance of an isomorphism. The
',rt 4

structure '(A, ) was, of course, constructed in an obvious way from the

group of non- constant linear functions with composition as the operation.

The ipNect of the exercise was to construct a group isomvphic to an lit-

'. portant group of common occurrence but having elements and rules of a

.._ different nature.

7. This exercise is straightforward. It suffices to note .in either case

>lis an operation, that (1,0) E A is the identity element, that;

/1

'

b -'' if (a,b) A , then k - --) E A and that- the verification -of the
a

associative law remains valid fs>r the_case where A, consists of the set-'
of ordered pairs of complex, numbers with non--zero first components.

Exercises 6.

1.- We note that (bd)(b-ld-1), =1 , so that (bd)-i =

Hence

ad
bd
+ bc \-1

-'(bd) (ad + bc)

-1
= b.' d

-1
(ad + bc)

(Clel)(ad) (b.1(21..1)(bc)

-1 -1=b a+dc
a c

= +
b 44d.

The details Fare. readily supplied.

. 2. The argument may be based on the use of reciprocals. Thus

a

b -1 -1
= c (b a)

=

= (bc):-la

a'
.

bc

27
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.-Irh-fiFdf.ind part may be 'treated Ets ,follows .

* ,a\

(a-lc)

z_td.737).=.1060).0,-

= ((d-1)-171R1r4;r

= (bc)-?"(ad).
.

. .

The-fb1lowing points

ad
be

=

should be emphasized:

Ca) The inditated calculations in the asserted identity are all mean-

ingful, there being no -divisions by zero.

(b) (d-1)-1 = .

'(c) A corresponding result holds for an arbitrary abelian group.'

3. The given pair of equationsimply

j e(ax + by) = ce, jd(a + by) = cd

-1 b(dx + ey) = bf 1 a(dx + ey) = of
.1

and subtraction giges (respectively)

ti

(ae - bd)x = ce - bf bd)y = af -
qv-

, Since e.e - bd / 0 , we coneluat

ce - bf ; cd
x -

ae - bd ' Y e - bd

so that if our system has any solution

(ce bf
ae - bd ae bd

(x,y) it mist be

Substitution in the original -.uations verifies thatAhis couple is in-

deed a solution:

af`'-
7.,

ce -'bf ace - abf + abf - bad .
p. b .2... c

' ae - bd . ael, d ae - bd*
,,

,---, x..,-ce - bf of - cd . cde - bdf + aef - cde -
d . -4 e _ - f .

ae -' bd 4 ae - bd s ae - bd

0

0 1 2

0 1 2

1 2

2 0 1

2&

0, 1

0

1

2

I0 0 0.

0 1 1 2
t ,

1 2 1
1



BotiAommutative laws follow from 'the -very construction of the addition

tand .mtatiplioat ion taliellt. On turning to the table (*) of Exercise 4,

No. 6, we see pn taking e = 0 ; a = 1 , b ='2 , that ,(A, +) is a

:group whose ,identity element is 0 . The postulate F'l is verified.

F 2 is readily checked from the multiplication table.

associative law,-.4a,' verified.

The }postulate

,(Be-egUre that the

As tar as F 3 is concerned we may put aside the case where, a'=

singe we know that the aoduct '0 and any .eleient of A is .

,they since Multiplication is commutative, it sufeides to consider only

the fir'st of the two distributive,laws. The check may be, tabulated as

follows:

a b c

1 0 Cc

1 0 1

1 0 2-

1 1 0

1 1 1

1 1, 2

1 2 0

1 2 1

1 .442 2

2 0 0

2 40 1.

2 0 2

'2 1 0
2 1 1

, 2 1 2

2 2 0

2 2 1

2 2 2'

a l(b +

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

04 = 0

1 = 1

2 = 2

1 -=.

2'= 2.

'0 = .0

2 ='2

0 = 0

0 = 0
al

1 = 2

2 = 1

1 = 2

2 = 1

0.= 0

2 = 1

0 = 0 '

2 1 = 2

1, + a c

O + 0 = 0

O + 1 = 1

O + 2 ='2

f + 0 =, 1

-4.-+ 1 =,

1 + 2

2 +' 2

2 + 1 F '0

2 + 2 e,-;1

O + 0

+ = 2

4P
0 + 1 =

+

+ 2 = 1

2 + 1 =

1 + 0e.= 1

1 + 2 =

. 1 + 1 = 2

This l's , qu te 'frankly, tedious. If t n-he division algorithm. has been
...

developecl, a w_ell as the 'rest:lb-that if a prime number divides oduct,

of integers it divides ,one of the factort, it is not hard to generalize

this exercise to the case whefe 3 is replaced%y an arbitrary prime p ,-

A is replaced by (0,1, - 1) and "addition" and " multiplication"

are .,defined as in the exercise save that.we operate with remainders ob-
_

tained division by p . If p is replaced by. a natural number which

is not a prime, the resulting structure is not afield.

29



.
5. The verification of E 1. and F2 is immediate. cf. Exercise 4, No. 3.

The additive identity is a: and the'mult;plicative identity is b .

Note that 13 consists simply of the element b . It suffices to verify

b(c + c )t= bc + bc
2 ' cl ''c2 6 A

1,

1 2 1

t8 be assured that F 3 holds. Since 1) = 1 ,,

and

Exercises 7.

1. From our formulas for sum 'and product we set that the usual addition and

c2) cl
+ c

2

+ bc
2

=
1
+ c

2
.

multiplication define operations in A

of A is an element, of A , as is easily checked. We have seen that the

same holds true for quotients of elements of A . The commutative, asso:

The difference of,two'elements

ciative.and dystributive laws hold for (A, +, ) ,since they hold for

the real number system. The verification of the field pbstulates IS now

routine.

2. The details parallel those of the first exercise and are readily.

`furnished.

3. Suppose that x is a Zeal number belonging to both and '11.'13 . Since
.

x e A , x = a 4bi2 whdre a' and b are rational. Since x eq3 ,
1 .

x = c + c11/ where' and d are rational. It is essentidr-to recall

that I and I are both iA-ationaI. We, start with the equality

a + =c + (115
-

and draw the consequences.

.

Case 1. d = 0 Here x is a rational number.

Case 2. d / 0 . Here we conclude that

r

that is, is of the form

1."

a - c 124-f

d

a

J4

where a and are both rational numbers. On taking squares, we have

/ .2
=

r-2
. 3 = 0,41_ 4-, i051,2) .

x_
L2

4
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we .conclude, by the Uniqueness property,, established in Sectibn 7 concer*-

ing the representation of the member of A \the form ,a + lit ,

a and b rational, numbers, that t

,,. %
\

;21
3' = a + 2f1

2

and

r.

-Now. .(Ei; Q since- /3- is an."irrationalrumber. Hence from 0 =

-we; conclUde . that .d = 0 and"
r

3.= 2f3
2

At thii point we make use of the fact that 3 may be written in the form

"la

2 Where i, and q k are natural numbers which are not both diyisible by v

a nIzral nulaber,.greater than one. In particular, p and q
.

be even. From Ok 10 wee obtain

= 2(E) 2

and Bence

(***)

Now q must be even, otherwise the left-hapd side of (***) would be
1

oddand the right-hand side keven. Henqe = 2r', Mere r is. a natural

miter . From (it **) --Zbbtain

3q2 = 42

cannot both

)

and hence

3(22.)2 ep2

2
= p

2
6r

We now see that p is even. This is,impossibler,for, p is odd. Hence

the hypothesis dr/ 0 must be rejected.

. Conclusion: 'Sc is a.ratlonal number; i.e., A(),,B (ZQ

Since Q (133 , we have Q=A(1B

NOte: A (),B means the intersection of gets ,A and B .

.'4

"a.

1
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